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Abstract: The synthesis and highly stereoselective intramolecular cyclizafion reactions of a series of (Z- 

pyridylthio)glycosides possessing silyl enol ether-containing appended groups are described. The cyclizations are 

explained in term of S,l -like reactions proceeding via anomeric cationic species. 

Intramolecular reactions are often attractive components of synthetic strategies because of the enhanced 

levels of regio- and stereocontrol associated with them. We have started a research programme aimed at the 

development of a general method for stereocontrolled C-glycosidation 1.2 via intramolecular cation-mediated 

cyclization. The strategy relies on the intramolecular delivery of an appended nucleophilic group to an 

electrophilic glycosidic ‘template’? We describe herein the synthesis and highly stereoselective ring-closure 

reactions of (2-pyridylthio)glycosides possessing silyl enol ether groups attached via ether linkages. 

Intramolecular Mukaiyama-type4 reactions of silyl enol ethers and ketene acetals with O-glycosides have 

been described.5 In these examples the anomeric cationic intermediates were generated by reaction of the O- 

glycosides with oxaphilic Lewis acids. This approach is less attractive for sugar-derived O-glycosidic 

substrates because of the likelihood of unwanted interactions of the Lewis acid with oxygen substituents other 

than at the anomeric position. A published6 solution to this problem lies in the use of S-glycosides in 

conjunction with thiaphilic metal additives. Silver(I)-induced intermolecular reaction of (2-pyridylthio)- 

glycosides with silyl enol ethers, silyl ketene acetals, and electron-rich aromatics gave diastereomeric mixtures 

of C-glycosides. We sought to assess the viability of the intramolecular variant of this approach for 

stereocontrolled C-glycoside synthesis. Enol ethers 1 and 2 were chosen as cyclization substrates. It was felt 

that comparison of the cyclization stereochemistry of the cis compounds c with that of the corresponding ~~UIIS 

isomers t would yield mechanistic information concerning the sequence of events leading to cyclization. 
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The ketone precursors 3 and 4 of cyclization substrates 1 and 2 were synthesized from 2,Sdihydrofuran 

and 3,4-dihydro-2H-pyran, respectively. The synthetic sequences began with oxidative alcoholysis of the 

cyclic enol ether starting material. 7 Methallylation of the resulting secondary alcohols, followed by ozonolysis 
gave ketones 5 and 6. O-Glycoside cleavage and (2-pyridylthio)ether formation6 completed the synthesis of 3 

and 4. Interestingly, ketones 3 were formed together with significant quantities of the cis thiopyridone 7, 

This competing reaction pathway was not observed in the preparation of the higher homologues 4. Treatment 

of ketones 3 and 4 with TBDMSOTf-Et3N in diethyl ether gave regioisomeric mixtures of silyl enol ethers 

which were separated by HPLC to give pure samples of lc, It and 2c, 2t, together with the regioisomers 8 

and 9 as diastereomeric mixtures of single geometric isomers. In practice, it was found most convenient to 

separate 3c and 3t prior to enol ether formation. In the higher homologous series, a mixture of 4c and 4t was 

subjected to the silylation conditions, and the resulting mixture of 2 and 9 separated into its four components 

by HPLC. The syntheses of 1,2,8 and 9 are summarized in Scheme 1. 
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(i) m-CPBA, BnOH: chromatography (SiOz); (ii) KH (1 S eq), THF: CICH2C(CH3)=CHz (1.3 eq), “BQNI (0.05 

cq); (iii) 03, CJ-b.Cb, -78“C; Ph3P (I eq); (iv) H+, 10% aq. M&N; (v) (PyS)2 (1.1 ~q), ~BU~P (1.1 cq), CHZCIZ 

(fl.2M), 0°C - r.1.. 1.5 h; (vi) Hz (I atm), 10% Pd(C) (13 mol%), EtOAc, H+, I-L, 60 h; (vii) TBDMSOT~ (1.2 cq), 

Et3N (1.5 cq), Et20 (O.l3M), 0°C - T.L., 2h; HPLC. 
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Initial attempts to effect the crucial ring-closure of 1 and 2 by the action of silver(I) 

trifluoromethanesulphonate in dichloromethane always gave substantial amounts of the products of hydrolysis 

of both the enol ether and S-glycoside groups. This problem was overcome by the rigorous exclusion of 

moisture from reaction mixtures. Thus, addition of a dichloromethane solution of 1 or 2 to an anhydrous 

mixture of silver(I) trifluoromethanesulphonate and activated 4A molecular sieves in dichloromethane effected 

smooth cyclization to give 10 and 11, respectively. 8 In all cases studied, the bicyclic products were obtained 

as single diastereomers, regardless of the relative stereochemistry of the nucleophilic ‘arm’ and the 2- 

pyridylthio anomeric substituent. The cyclization reactions of 1 and 2 are depicted in Scheme 2. 
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The non-dependence of the stereochemical course of cyclization on substrate stereochemistry suggests the 

intermediacy of cyclic oxonium species, which are probably in equilibrium with the corresponding anomeric 

triflates.6 For enol ethers I having a five-membered template the sense of intramolecular nucleophilic attack 

may readily be understood in terms of the prohibitive strain energy which would be associated with the 

unobserved rmns-fused bicyclo[3.3.0] products. For substrates 2 possessing a six-membered ring one may 

envisage a degree of pyramidalizations of the oxonium intermediates because of the C-3 stereocentre. This 

distortion of the sp2-hybridized anomeric carbon atom away from idealized trigonal geometry is such as to 

favour attack on the face ~yn to the oxygen atom bearing the nucleophilic side-chain, with formation of the 

new carbon-carbon bond trrking plrrce in the direction of pyramidalization (Scheme 3). 
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We have found that it is possible also to construct four-membered rings using this intramolecular 

cyclization reaction. Exposure of either 9c or 9t to the cyclization conditions outlined in Scheme 2 gave in ca. 

60% yield the bicyclic ketooxetane 12 as a single diastereomer (Scheme 4). The structure of 12 followed from 

high-field 1H and 13C nmr, ir, and high-resolution ms analysis. In addition, 12 showed ‘H and IJC nmr 

characteristics very similar to those of the related bicyclic oxetane 13.10,*1 
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Scheme 4 

In summary, we have demonstrated that bicyclic C-glycosides may efficiently be constructed in a highly 

stereoselective fashion via silver(I)-induced intramolecular cation-mediated cyclization reactions of S- 

glycosidic silyl enol ethers. We are currently designing modified cyclization substrates more amenable to 

regiocontrollcd introduction of the nucleophilic double bond in the side-chain. We are also actively exploring 

the generality of the oxetane-forming reaction, and are developing modified routes to the requisite precursors. 
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