Stereoselective Template-directed C-Glycosidation. Silver(I)-mediated Intramolecular Reactions of (2-Pyridylthio)glycosidic Silyl Enol Ethers

Donald Craig* and V. Ranjit N. Munasinghe

Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, U.K.

Key Words: stereoselective cyclization; C-glycoside; intramolecular; (2-pyridylthio)ether; silyl enol ether

Abstract: The synthesis and highly stereoselective intramolecular cyclization reactions of a series of (2-pyridylthio)glycosides possessing silyl enol ether-containing appended groups are described. The cyclizations are explained in terms of $S_N l$ -like reactions proceeding via anomeric cationic species.

Intramolecular reactions are often attractive components of synthetic strategies because of the enhanced levels of regio- and stereocontrol associated with them. We have started a research programme aimed at the development of a general method for stereocontrolled C-glycosidation^{1,2} via intramolecular cation-mediated cyclization. The strategy relies on the intramolecular delivery of an appended nucleophilic group to an electrophilic glycosidic 'template'.³ We describe herein the synthesis and highly stereoselective ring-closure reactions of (2-pyridylthio)glycosides possessing silyl enol ether groups attached via ether linkages.

Intramolecular Mukaiyama-type⁴ reactions of silyl enol ethers and ketene acetals with O-glycosides have been described.⁵ In these examples the anomeric cationic intermediates were generated by reaction of the Oglycosides with oxaphilic Lewis acids. This approach is less attractive for sugar-derived O-glycosidic substrates because of the likelihood of unwanted interactions of the Lewis acid with oxygen substituents other than at the anomeric position. A published⁶ solution to this problem lies in the use of S-glycosides in conjunction with thiaphilic metal additives. Silver(I)-induced intermolecular reaction of (2-pyridylthio)glycosides with silyl enol ethers, silyl ketene acetals, and electron-rich aromatics gave diastereomeric mixtures of C-glycosides. We sought to assess the viability of the intramolecular variant of this approach for stereocontrolled C-glycoside synthesis. Enol ethers I and 2 were chosen as cyclization substrates. It was felt that comparison of the cyclization stereochemistry of the *cis* compounds **c** with that of the corresponding *trans* isomers **t** would yield mechanistic information concerning the sequence of events leading to cyclization.

The ketone precursors 3 and 4 of cyclization substrates 1 and 2 were synthesized from 2,3-dihydrofuran and 3,4-dihydro-2*H*-pyran, respectively. The synthetic sequences began with oxidative alcoholysis of the cyclic enol ether starting material.⁷ Methallylation of the resulting secondary alcohols, followed by ozonolysis gave ketones 5 and 6. O-Glycoside cleavage and (2-pyridylthio)ether formation⁶ completed the synthesis of 3 and 4. Interestingly, ketones 3 were formed together with significant quantities of the *cis* thiopyridone 7. This competing reaction pathway was not observed in the preparation of the higher homologues 4. Treatment of ketones 3 and 4 with TBDMSOTf-Et₃N in diethyl ether gave regioisomeric mixtures of silyl enol ethers which were separated by HPLC to give pure samples of 1c, 1t and 2c, 2t, together with the regioisomers 8 and 9 as diastereomeric mixtures of single geometric isomers. In practice, it was found most convenient to separate 3c and 3t prior to enol ether formation. In the higher homologous series, a mixture of 4c and 4t was subjected to the silylation conditions, and the resulting mixture of 2 and 9 separated into its four components by HPLC. The syntheses of 1, 2, 8 and 9 are summarized in Scheme 1.

(i) *m*-CPBA, BnOH; chromatography (SiO₂); (ii) KH (1.5 eq), THF; CICH₂C(CH₃)=CH₂ (1.3 eq), ⁿBu₄NI (0.05 eq); (iii) O₃, CH₂Cl₂, -78°C; Ph₃P (1 eq); (iv) H⁺, 10% aq. MeCN; (v) (PyS)₂ (1.1 eq), ⁿBu₃P (1.1 eq), CH₂Cl₂ (0.2M), 0°C - r.t., 1.5 h; (vi) H₂ (1 atm), 10% Pd(C) (13 mol%), EtOAc, H⁺, r.t., 60 h; (vii) TBDMSOTf (1.2 eq), Et₃N (1.5 eq), Et₂O (0.13M), 0°C - r.t., 2h; HPLC.

Scheme 1

Initial attempts to effect the crucial ring-closure of 1 and 2 by the action of silver(I) trifluoromethanesulphonate in dichloromethane always gave substantial amounts of the products of hydrolysis of both the enol ether and S-glycoside groups. This problem was overcome by the rigorous exclusion of moisture from reaction mixtures. Thus, addition of a dichloromethane solution of 1 or 2 to an anhydrous mixture of silver(I) trifluoromethanesulphonate and activated 4Å molecular sieves in dichloromethane effected smooth cyclization to give 10 and 11, respectively.⁸ In all cases studied, the bicyclic products were obtained as single diastereomers, regardless of the relative stereochemistry of the nucleophilic 'arm' and the 2-pyridylthio anomeric substituent. The cyclization reactions of 1 and 2 are depicted in Scheme 2.

The non-dependence of the stereochemical course of cyclization on substrate stereochemistry suggests the intermediacy of cyclic oxonium species, which are probably in equilibrium with the corresponding anomeric triflates.⁶ For enol ethers 1 having a five-membered template the sense of intramolecular nucleophilic attack may readily be understood in terms of the prohibitive strain energy which would be associated with the unobserved *trans*-fused bicyclo[3.3.0] products. For substrates 2 possessing a six-membered ring one may envisage a degree of pyramidalization⁹ of the oxonium intermediates because of the C-3 stereocentre. This distortion of the sp²-hybridized anomeric carbon atom away from idealized trigonal geometry is such as to favour attack on the face *syn* to the oxygen atom bearing the nucleophilic side-chain, with formation of the new carbon-carbon bond taking place in the direction of pyramidalization (Scheme 3).

Scheme 3

We have found that it is possible also to construct four-membered rings using this intramolecular cyclization reaction. Exposure of either 9c or 9t to the cyclization conditions outlined in Scheme 2 gave in *ca*. 60% yield the bicyclic ketooxetane 12 as a single diastereomer (Scheme 4). The structure of 12 followed from high-field ¹H and ¹³C nmr, ir, and high-resolution ms analysis. In addition, 12 showed ¹H and ¹³C nmr characteristics very similar to those of the related bicyclic oxetane 13.^{10,11}

In summary, we have demonstrated that bicyclic C-glycosides may efficiently be constructed in a highly stereoselective fashion via silver(I)-induced intramolecular cation-mediated cyclization reactions of S-glycosidic silyl enol ethers. We are currently designing modified cyclization substrates more amenable to regiocontrolled introduction of the nucleophilic double bond in the side-chain. We are also actively exploring the generality of the oxetane-forming reaction, and are developing modified routes to the requisite precursors.

Acknowledgements

We thank the SERC (postdoctoral fellowship to V. R. N. M.), ICI plc, and Glaxo Group Research Ltd (gift of HPLC equipment) for financial support of this research.

References and notes

- 1. For leading references, see footnote 1 of reference 2.
- 2. For a recently-published example of the use of radical-mediated reactions as part of a similar strategy to that reported herein, see: Stork, G.; Suh, H. S.; Kim, G. J. Am. Chem. Soc. 1991, 113, 7054.
- For the use of templates in stereoselective intermolecular reactions, see: (i) Stork, G.; Rychnovsky, S. D.; J. Am. Chem. Soc. 1987, 109, 1564, 1565; Hanessian, S.; Cooke, N. G.; DcHoff, B.; Sakito, Y. J. Am. Chem. Soc. 1990, 112, 5276 (γ-lactones); (ii) Thomas, E. J.; Williams, A. C. J. Chem. Soc., Chem. Commun. 1987, 992 (β-lactams).
- 4. Mukaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem. Soc. 1974, 96, 7503.
- (i) Martin, O. R.; Prahlada Rao, S.; Kurz, K. G.; El-Shenawy, A. A. J. Am. Chem. Soc. 1988, 110, 8698; Martin, O. R. Tetrahedron Lett. 1985, 26, 2055; Martin, O. R.; Mahnken, R. E. J. Chem. Soc., Chem. Commun. 1986, 497; Martin, O. R. Carbohydr. Res. 1987, 171, 211; (ii) Stork, G.; Krafft, M. E.; Biller, S. A. Tetrahedron Lett. 1987, 28, 1035.
- 6. Stewart, A. O.; Williams, R. M. J. Am. Chem. Soc. 1985, 107, 4289.
- 7. Cox, P.; Lister, S.; Gallagher, T. J. Chem. Soc., Perkin Trans. 1 1990, 3151.
- 8. Nmr data (CDCl₃): 10; δ_{H} (500 MHz) 4.35 (1H, ddd, J 7.5, 5.5, 2.5 Hz, H-3), 4.18 (1H, q, J 5.5 Hz, H-2), 4.08 (1H, d, J 17.5 Hz, H-8), 4.08-4.03 (1H, m, H-5), 3.82 (1H, d, J 17.5 Hz, H-8), 3.73-3.68 (1H, m, H-5), 2.84 (1H, dd, J 15.5, 5.5 Hz, H-6), 2.78 (1H, dd, J 15.5, 5.5 Hz, H-6), 2.32-2.25 (1H, m, H-4), 2.13-2.07 (1H, m, H-4); δ_{C} (125.8 MHz) 209.2, 77.7, 76.3, 71.2, 66.5, 40.9, 32.8. 11; δ_{H} (500 MHz) 4.20 (1H, d, J 16 Hz, H-9), 4.05 (1H, d, J 16 Hz, H-9), 4.03-3.99 (1H, m, H-6)_{eq}), 3.88 (1H, td, J 3.5, 0.5 Hz, H-3), 3.75 (1H, t, J 3 Hz, H-2), 3.48 (1H, ddd, J 12.5, 11.5, 2.5 Hz, H-6_{ax}), 2.63 (2H, m, H-7), 2.11-2.06 (1H, m, H-4_{eq}), 2.05-1.94 (1H, m, H-5_{ax}), 1.80-1.72 (1H, m, H-4_{ax}), 1.38-1.33 (1H, m, H-5_{eq}); δ_{C} (125.8 MHz) 205.2, 74.3, 73.9, 70.8, 68.3, 44.2, 28.2, 20.0.
- 9. Seebach, D.; Zimmerman, J.; Gysel, U.; Ziegler, R.; Ha, T.-K. J. Am. Chem. Soc. 1988, 110, 4763.
- 10. We thank Dr H. A. J. Carless (Birkbeck College) for providing nmr spectra of 13.
- 11. All new compounds reported herein had nmr, ir and high-resolution ms characteristics in accord with the proposed structures.

(Received in UK 18 November 1991)